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ABSTRACT
Let B be a convex body in R™ and let £ be an ellipsoid of minimal volume
containing B. By contact points of B we mean the points of the intersection
between the boundaries of B and £. By a result of P. Gruber, a generic
convex body in R™ has (n + 3) - n/2 contact points. We prove that for
every £ > 0 and for every convex body B C R™ there exists a convex body
K having
m < Cle) -nlogdn

contact points whose Banach-Mazur distance to B is less than 1 + €.

We prove also that for every ¢ > 1 there exists a convex symmetric
body I’ C R™ so that every convex body D C R™ whose Banach-Mazur
distance to I is less than t has at least (1 + co/t?) - n contact points for
some absolute constant cg.

We apply these results to obtain new factorizations of Dvoretzky—Rogers
type and to estimate the size of almost orthogonal submatrices of an

orthogonal matrix.

1. Introduction

Let K be a convex body in R” and let £ be the ellipsoid of minimal volume
containing K. By the contact points of K we mean the points of the intersection
between the boundaries of K and £. The importance of contact points follows
from the special role played by the minimal volume ellipsoid in the Local Theory
of Banach Spaces and Convex Geometry. In particular, a special family of contact

* Research supported in part by a grant of the US-Israel BSF.
Received November 13, 1995

93



94 M. RUDELSON Isr. J. Math.

points was used by K. Ball to show that the n-dimensional simplex and cube have
the maximal volume ratio among all convex and convex symmetric bodies in R™
respectively ([B1], [B2]). Contact points arise also in the problem of estimating
the Banach-Mazur distance between a convex symmetric body and the cube of
an appropriate dimension ([B-S], {S-T], [Gil]).

To study contact points we need to introduce the notion of John’s decompo-
sition. By a celebrated theorem of F. John [J] there exists a unique ellipsoid of
minimal volume containing a given convex body K € R, This ellipsoid will be
called the John ellipsoid of K. If the body K is embedded in R so that its John
ellipsoid is the standard Euclidean ball BY, then there exist M < N = (n+3)n/2
contact points xj,...,zp and M positive numbers ¢y,...,cps satisfying the

following system of equations:

M
(1.1) id:Zcixi®xi,
i=1
M
(12) O:ZCixi-
i=1

Here by id we denote the identity operator in R*. Besides it, John’s proof shows
that if K is a convex subset of B3 containing the points x1,...,zy, then B} is
the John ellipsoid of K. The system (1.1) is called the John decomposition of
the identity operator. This notion will be crucial in the study of contact points.

For a symmetric convex body it is enough to take M < N, = (n+1)n/2 points
n (1.1). Note that N, is the dimension of the space of symmetric matrices and
N = N, +n.

Clearly, the number of contact points of a convex (respectively, convex sym-
metric) body in R” cannot be less than n + 1 (respectively, 2n). However, for
most convex bodies this number is much bigger. Before formulating this precisely
let us recall the definition of the Banach-Mazur metric in the space of convex
bodies.

Let K be the set of all n-dimensional convex bodies. For K, B € K define a
distance between K and B as

d(K,B)=inf{c| K+ u C TB C ¢(K + u)},

where the infimum is taken over all vectors u € R” and all invertible operators T'.
If K and B are symmetric, then u = 0 and d becomes the usual Banach-Mazur

distance.
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P. Gruber [Gr] proved that the set of all convex bodies for which the number
of contact points differs from N (N in the symmetric case) is a set of the first
Baire category in K. In Section 2 we give a simpler proof of this result. It follows
also from the proof that the closure of the set of convex bodies having less than
N contact points is nowhere dense in K.

However, it turns out that every convex body can be approximated by another
one, for which the number of contact points is practically of order n. We prove

the following

THEOREM 1.1: Let B be a convex body in R* and let ¢ > 0. There exists a
convex body K C R™, so that d(K, B) < 1+ ¢ and the number of contact points
of K with its John ellipsoid is less than

(1.3) m(n,e) = C(e) - n-log®n.

Moreover, if K is embedded in R™ so that its John ellipsoid is the standard
Euclidean ball By, then the identity operator on R™ has the following

decomposition:
m
(1.4) id =" au ®u;,
i=1
where m < m(n, €),us, ..., un are the only contact points of K with B,
(1.5) Z a;u; =0
i=1

and for every i, 1-¢< 7a; <1+e.

The proof of Theorem 1.1 consists of two steps. In Section 3 we show that,
given a John decomposition generated by the contact points z1,..., T, we can
find a subsequence z;,,...,x; , remove from the John decomposition the other
points and change the coefficients ¢; so that the operator we get will be close
to the identity. This method was previously introduced in [R] for convex sym-
metric bodies. The proof is based on estimates of the supremum of some family
of Bernoulli random variables. Then in Section 4 we construct a body K, so
that this approximate decomposition of the identity operator becomes the John
decomposition for K.



96 M. RUDELSON Isr. J. Math.
Actually we are able to improve the estimate in (1.3) to
m < C(e)-n-logn.

This can be achived by applying Talagrand’s method of majorizing measures
({T]). Since however the proof of this improvment is much more involved than
that of (1.3), we shall present it in a different paper.

In Section 5 we study the question how much the number of contact points can
be reduced, if instead of e-approximation, we approximate a given body B by
bodies whose distance to B is bounded by some large number ¢t. We show that
there exists a convex symmetric body I' C R® whose number of contact points

cannot be reduced to n + o(n). More precisely, we prove the following

THEOREM 1.2: For every t > 1 and for every n > ng(t) there exists a convex
symmetric body I' C R"™ such that

(1) every convex symmetric body K satisfying d(I',K) < t has at least
(14 ¢o/t%) - 2n contact points;
(2) every convex body D satisfying d(I', D) < t has at least (1 + co/t?) - n

contact points.

Here ¢q is an absolute constant.

In Section 6 we use Theorem 1.1 for a symmetric body to derive a factorization
theorem of Dvoretzky-Rogers type and Theorem 1.2 to obtain a lower bound
related to such a factorization.

Finally, in Section 7 we apply the results of Section 3 (actually those of [R])
to solve a problem of B. Kashin and L. Tzafriri.

Let us introduce some notation. Let K C R*, B C R™ be convex bodies.
If 0 € K then by ||-||, we denote the Minkowski functional of K. For a linear

operator T: R™ — R™ define a norm as
I B — K| = sup{|ITzl . | =€ B).

If K and B are symmetric this is a usual operator norm. The n-dimensional
Euclidean ball will be denoted by Bj. Instead of ||z|| Bp and ||T: By — BE|| we
write ||z|| and ||T|| respectively. The letter P stands for probability and the letter
E for the expectation of a random variable. By C, ¢, C etc. we denote absolute

constants whose value may change from line to line.
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2. Typical number of contact points

Let £ (K) be the set of all n-dimensional convex (convex symmetric) bodies
equipped with the Banach-Mazur metric. It is known that K and K are complete
metric spaces. Denote by D,, the set of all bodies B € K which have at most m
contact points. Similarly, D,, stands for the set of all B € K having at most m
pairs of contact points. Obviously, none of the sets D,,, Dy, is closed. However

we have the following

THEOREM 2.1:

(1) For every m, n < m < N, cID,, is a nowhere dense subset of c/Dp, 1.
(2) K\Dy, is a set of the first Baire category in K.

Note that since K is complete, it follows from the theorem that a generic (in
the sense of category) convex symmetric body has exactly N, contact points.

For a general convex body we have a similar result.

THEOREM 2.1':

(1) For every m, n < m < N, clD,, is a nowhere dense subset of cIDm+1.
(2) K\Dy is a set of the first Baire category in K.

Before proving the theorem let us introduce some notion. Let K be an n-
dimensional convex body. We say that K is in standard position if the John
ellipsoid of K is B3. Let (1.4), (1.5) be a John decomposition for K. Note
that this decomposition is not uniquely defined. By the length of the John
decomposition we mean the number of different terms x; ® x;. This notion was
studied by A. Pelczynski and N. Tomczak-Jaegermann [P-T-J}. In particular they
proved that for every n < m < N there exists a convex symmetric body which

has a unique John decomposition of length m.

Proof of Theorem 2.1: Let Cp, be a set of all n-dimensional convex symmetric
bodies which have a John decomposition of length at most m. Obviously, for
m < N, we have that D,, C C,,. Moreover,
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LEMMA 2.1: If m < N, then cID,, = C,,.

Proof: We prove first that the set C,,, is closed. Let {K;}2, C Cp, be a sequence
of convex symmetric bodies converging to some body K € K. Suppose that K,

are taken in standard position and the John decomposition for K; is
m
id= Zcﬁxi ® .
=1

Passing to a subsequence, we may assume that c. — ¢; and z! — z; for every

i < m. Hence, we have ||z;|]| =1 and
m

(2.1) id = Zcixi®xi.
i=1

Let T;: R* — R™ be an operator so that
d;' K, CT\K C K, C By,

where d; = d(K,;, K) — 1. Passing again to a subsequence, we assume that T; —
T. Then TK C B and z; € TK for all <. Thus, (2.1) is a John decomposition
for K.

Now let K € C,, and let ¢ > 0. We construct a new body K. € D,, so
that d(K,K.) < 1+¢. Let K be in standard position and let (2.1) be a John
decomposition for K. Define K, by

K, = ab:
e asconv(l+€

-K,xl,...,xm> .
Then K. C B} and 0K, N OB} = {zy,...,Zm} . So, B} is the John ellipsoid of

K. and
1

-KCK.CK. 1
1+¢

To obtain (1) we have to prove now that C,, is nowhere dense in C,,41. The
proof goes by induction on m. For m = n — 1, C,, = §, so the statement is
trivial. Let now K € C,,. For given ¢ > 0 we have to construct a new body
K € Cpy1\Crm s0 that d(K, K) < 1+¢. By the induction hypothesis K can be
approximated by a body K € C,;,\Cyn—1. Suppose that K is in standard position
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and (2.1) is the John decomposition for K. We use the construction of Lemma
2.5 of [P-T-J]. Note that the tensors z; @ z; are linearly independent. Indeed, if

O:iaixi@)xi

i=1

then

m

id= Z(Ci — oa;)r; ® T;
i=1
and we can choose « so that all the coefficients except some iy are positive and
i, — aa;, = 0. This contradicts K ¢ Crp_1.
Without loss of generality we may assume that the vectors zi,...,z, are
linearly independent. Then the tensors z; ® z; +z; ®z;, ¢,j=1,...,nforma
basis of the space of symmetric matrices. Since m < N, there exists a pair 4, j

with 4, j < n, so that
T ®z;+; ©x; ¢ span(T; @ T1y.. ., T ® Tpn)-

Suppose that this holds for ¢ =1, j = 2. For a > 0 define

d=2y A= _2%y =Ly
0*—\/5 2 1—'\/—2- ) 2 2"\/‘2— 2 2y
! 2
2 = o zg =
[EY llz2l

Then
’ / / ’ / /o 2
2002 +21 Q21 +2, Q2 =21 @ 7% +a” - T2 ® To,

so we have the following representation of the identity operator:
. cra? m
(2.2) id=¢; |lzi||2-z1®z1+c1 |lz§|{2-z2®22+ (cz - Lz—) L@yt ) CEiRT;.
i=3

For sufficiently small « all the coefficients are positive.
Define now

~ 1
K = abs conv (1+ K,zl,z2,x2,...,a:m).

€

For small o and ¢, K is arbitrary close to K. We claim that K € Cont1\Crm-
Indeed,

L1 QT +T2Q 1 € span(21 ® 21,29 20,22 Q .’EQ).
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Hence,

dimspan(z; ® 21,29 ® 20, L2 ® T2, .- ., T @ Tpy) =M + 1
and this means that the decomposition (2.2) is unique. |

(2) Let € > 0 and let F(e) be the set of all bodies K € K having Ns+1 contact
points, so that if K is taken in the standard position, then the mutual distances
between these points are at least €. As in part (1) it can be easily shown that
F(e) is closed in the Banach-Mazur metric. Since F(¢) N Dy, = 0 and Dy, is
dense (by part (1)), the set F(¢) is nowhere dense. We have that

K\Dy, = | J f(%) (]

neN

The proof of Theorem 2.1’ is similar, although it is more technical and we shall
only sketch it. We proceed as in the proof of Theorem 2.1. The only difference
is that (2.2) is not a John decomposition since

2 m
o
u=c; Hz;l]Q <21+ €y Hzgllz -2+ <cz - 1—2-> -z + Zcixi & x;

i=1
c1a?

=c (Il 21 + |22l 25 — 1) — —5 2 #0

and (1.4) does not hold. However, u € span{z{,z2} and [[ul| = O(a?), so we can
find coefficients d; and dy which are close to ¢; ||2}|| and ¢z — c102/2 respectively

so that the operator
(2.3) T=diz1®zn+a ”Zé” 29 @ 29 + daxo @ 22 + Z CiT; @i
=3
satisfies |T — id|| = O(a?) and
m
(2.4) diz1 + ¢ ||z§|| 29+ dozo + Zc,—:c,- = 0.
=3

Thus (2.3), (2.4) is an approximate John decomposition, and we can use the
construction of Section 4 to obtain an approximating body K with the desired
properties. |
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3. Approximate John decomposition

Before constructing a new body with a smail number of contact points, we find
for a given body an approximate decomposition of the identity operator. We get
this decomposition in several steps. At each step we select randomly a subset of
the contact points and after it move the body so as to preserve (1.5).

LEMMA 3.1: Let B be a convex body in R*, so that its John ellipsoid is Bj.

Then there exist
m < C(e)-n-log®n

contact points 1, ..., T, and a vector u, [jull < \/mc;(g? 7, S0 that the identity
operator in R™ has the following representation:
R
(3.1) id=— Zl(x,- +u) @ (z; +u) + S,
1=
where
m
(3.2) Y (@i+u) =0
=1
and
(3.3) IS: €5 — €3] < e.

Remark 3.1: Denote B = B + u. Then from (3.2) it follows that 0 € IntB and
the Minkowski functional for B is well defined.

Proof: Let € > 0 and let

k
id =Y ¢z, ® 1
=1

j=

j:vj=0

M-

I
-

J

be a John decomposition for the body B. Set M = [%2£] and N; = [f_ffi}

or N; = [g,;l\i] + 1, so that E;;l N; = M. Form the sequence z1,...,zy by
repeating N; times each term Z;. Define

_ n M
T0=X/I~Zx,-®m,-.

=1
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Then
k Non k .
=2l = | (- ) zvoms) < 7 Yl o ml < 5
j=1 j=1
and
M k
n . Nin €
2yl = |2 (5 )| <
=1 j=1
Put
T
Ug = —7~ Z-Tia
M i=1
n M
0=M2x1+uo @ (z; + ug)-
i=1
Then
- &2
Ty — T, = H 1 -
|ITo - To|| zzl(x ® uo + o B ;) + g @ ug|| = 1 [luo S uol| < T
Let p,...,up be independent Bernoulli variables taking values 0 and 1 with

probability 1/2. Define an operator
Tl = 2— Z x; + UO) ® (171 + UO),
zEI1
where I is the set of indices ¢ for which u; = 1. With probability greater than
3/4, M/4 < |I,| < 3M/4. To estimate the norm of T; — Ty use the following

LEMMA 3.2: Let yi,...,ym be vectors in R*, &1,...,em be independent
Bernoulli variables, taking values 1,~1 with probability 1/2. Then

Zg'tyz ® Yi Zyz®yz

=1 i=1

1/2
< Clogny/logM - ma.x sl -

for some absolute constant C.

The proof of Lemma 3.2 is based on entropy estimates of Rademacher random
variables and we postpone it to the end of the section. Taking y; = x; + ug, we
get from Lemma 3.2 that, with probability greater than 1/2,

(34) ”T1 Tg” < 40\/-logn\/logM
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Denote
uy = Z(xt + uO
ol o
. M
Since Y, (x; + ug) =0,
M M
Zui(aci +up)|| =E Z(ui — %)(ﬂ?l +uo)fj < \/M
i=1 i=1

Hence we can choose the set Ij so that |I;] > M/4, |lui|| < 4/+/|]1] and (3.4)
holds. Define

Ty —2M (s + uo +ur) ® (i + uo + u1).
i€l
Then anl1,| 29
= YESY n
Ty — =— < —
1T - Tiff = =57 - llm @ wml < 57
Proceeding this way, we construct by induction a sequence of sets {1,..., M} =
I D> I, D--- D I, and a sequence of vectors ug, 4, .. ., Us, S0 that
3
i) < 7 - 1451,
4
lluill < :
;]
Z(Ii+U0+"'+u]‘) =0,
i€l

and for the operator

2 .n
Ty = S (@itug+oHuy)® (i ug e+ uy)
icl;

one has

n
3. L _TN< O — . . .
(3.5) T -l <C ‘/|Ij| logn - \/log |1

Summing the inequalities (3.5) we get

lid - Tolf < Jlid — Toll + [ To ~ Talj + - -+ + | To-1 — T

<E4CVilogn: (\/loglfol+\ﬂ0glfll+ +\/“’“log|fs-11)_

Vil VA VL]
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Choose s so that the last expression will be less than €/2. Simple calculations
show that in this case |I,| < C(e)nlog®n and

_Cle)
fluo + u1 + -+ + usl| < Tnlogn
Denote m = |I5|, u=uj+uz+---+us and renumerate the sequence 1,..., M,

so that I, becomes its initial segment {1,...,m}. Then, (3.2) holds and

(3.6) ”id — Ag(xi + u) ® (:L‘i + u)H < g—,

where A = 2°n/M. To get (3.1), (3.3) from this, take the trace. By (3.6), we

have [n — A-m| < 3¢ -n, so

<e. [ |

LN
1d~aiz=;(xl+u)®(x,+u)

Proof of Lemma 3.2: Without loss of generality, we may assume that

max;-1... = ||4:l| = 1. By an inequality of Dudley [L-T],

M
Y e ou ZEK% %)
i=1

Here N(B%,d,u) is the maximal cardinality of a u-net in B} in the metric 4,

(Z((x v:)® — (v, 9:)°) ) v

Denote ||y|ly = sup;—; .. s [{y,%:)]- The metric § can be easily estimated by this

[e¢]

<cC. / (108 3(B3,5 u))l/zdu.
0

=E sup
llvll<1

where

norm:

1/2
8(z,y) (}:((w i) + (¥, 9:) ) +_sup iz — v,

=1,..4

1/2
Az +yll-llz=ylly <p-llz—ylly,

Zyi ® v
i=1

where p = 2 “Zf‘il ¥ ® yiullz

1
N(Bf6,u) < N (B;, -y ;u) ,
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and

[e o}

1/2
<Co- [ (10gNBRI-Iv,0) .
0
If v > 1, then N(B%,| - |ly,v) = 1, because ||y|l,, < ||y|l. A standard volume

E

M
Yo

i=1

estimate gives

[d n n 2 n
(3.7) N(B3, |- lv,0) < N(BR ML) < (14 2)
By an inequality of Pajor and Tomczak-Jaegermann [Pa-T-J], we get

. /2
(3.8) (los N (BE. I v, ) < B gl ,

where g is a standard Gaussian vector in the space R*. The estimate of E ||g||,

is well known. Denote g; = (g, z;),i =1,..., M. Then

M 1/log M
Elfloly =E_sw lo <E (2 i/ M)

=1,...,

1=1

(3.9)

M 1/log M
< (EZ lgillogM) < CMl/logM . /IOgM.
=1

Combining the estimates (3.7), (3.8) and (3.9), we have

[=3) A 1

1/2 2.3\ 1/2 d
/(1ogN(B;‘,l|-lly,v)) de/(n-log(1+;)) dv+/C\/logM—v—v
0 0

A
1
§A~\/ﬁ-log(1+%)+C'\/logM-logZ.

To end the proof choose A = 1/4/n. 1

Remark 3.2: Let B be a convex symmetric body whose John ellipsoid is BY.
Let ay, ..., a, be positive numbers and uy, ..., u,, be contact points so that (1.4)
holds. Then, adding to the collection uy,...,u, the points —uy,..., ~Um, We
provide (1.5). Thus, in symmetric case we can always set u = 0 in Lemma 3.1.

Remark 3.3: One cannot make the coefficient in Lemma 3.2 smaller than
Clogn. Indeed, suppose that M = n -k and y; = ¢; for (j —~ 1)k < @ < jk.
Then,

M n jk jk
Zc‘iyi ® Y

= ;] €, ®e;|| = max Z &l .
2 Y w]eoe)= max :
J

j=1 \i=(j—1)k+1 i=(j—1)k+1
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For sufficiently large k, k~'/2 Zik:1 e; behaves like a Gaussian variable, so

M
Z Yi @ Yi
1=1

M 1/2

Zsiyz‘ O Ys

i=1

E

> C\/E\/I_(Er; = Cy/logn -

4. Construction of the approximating body

Suppose that the body B is embedded into R™ so that its John ellipsoid is B%.
Using the approximate John decomposition (3.1) — (3.3) we construct a body K
close to B, having m contact points with its John ellipsoid.

Let &€ > 0. Denote B = B +u, Y; = T; + u and set

: n o
T——ld—S—— ;l‘;y'L@ylw
where ||S]| < /8. By (3.2)

(4.1) Y vi=o.

=1
Let v € R™, and ||v]] < ¢/+/n be a vector, which we shall define later. Denote

m

T, = %Z(%-FU) ® (¥ +v),

=1

Ry=TY?and £=¢, = R,B%. By (4.1), for sufficiently small «,

(42) T ~id < IT =TI+ 8] <ne oo ol +IS] <&+ 5 < 5.
So

€ n €

(1—1)5cB2 c (1+4)£.
Denote
. (yi +v)
zi = - (y;
lly: +vllg

and set

. 1 -
K:conv(1+E(B+v), zl,...,zm>.

Since B C B} and |jv|| < ¢/+/n, we get that the only contact points of K with £
are z1,...,2y,. We prove now that

1_lk)3(1§'+v)cI~(c(1+2e)(J§+v).
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The first inclusion is obvious. To prove the second, let x € K and consider a

m
ap
= b o2,
1+¢ +; ’

where b € B + v, aiZOandZ;":oaigl. Note that y; = z; + u, B=B+u
and since z; € 8B, y; +v € 0(B +v), so |ly; + |5, = 1. Since
C(e)
u
| II_\/_1 e » Il_f

we have ||y; + v||; > 1 —e. Then from the triangle inequality it follows that

decomposition of x

m

Qo 1
g, <—+ Y o —— - ||lui + v 5
el € 35+ 2 00 gy o+ vlas,

(o)) 1 bl
s <142,
_1+€+1_E;a <142

Define now a decomposition of the identity operator

m
(4.3) id=R;'oToR;! ZZ ”yz+v”g R;'zz®@R; 'z = Zaﬂh@u“
i=1 =1
where
n 2 _
a; = m lly: + vl u; = R, 'y,

Finally, define a body K = R 1£. Then K C B2 and the only contact points

of K with B are uy,...,u,. If the vector v is chosen so that
m

(44) Z a;U; = 0,
=1

then (4.2), (4.3) become a John decomposition of the body K and, by [J] (see
also [B]), BY is the John ellipsoid of K. To end the proof of Theorem 1.1, it
remains to find a vector v for which (4.4) holds. Note that by the definition of

the norm ||||,

ik n - i _ 112 y; +v
au; = — - R;! Ry'wi+o)|" ———
2= (;” el HRJ(w+v>H)

R, (i(yi +0, T, (i +0)) 2 (v + v)) :

i=1

Thus what remains to prove is the following
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LEMMA 4.1: Lete > 0, y;, i = 1,...,m be as above. There exists a vector v,

satisfying the following conditions:

(i) ol < ==
(i) S i+ v, Ty My +0)) 2y +0) = 0,
i=1
where
n m
Tv - T i .
m;(y +0) ® (3 + )

Proof: By (4.1), we can rewrite (ii) as

> ((yi +0, T g +0) /2 - 1) it D (v +0, T (g + )20 = 0.
=1 i=1

Define a function F: %B; — R™ by

F(v) =— (Z(yi +0, T, (yi +v) Y 2)

‘ (i ((yi +0, T, (g +0))/? - 1) yi) .

i=1

By the Brouwer fixed point theorem it is enough to prove that F' maps %BQ to
itself. Let ||v|| < e/y/n. Remark first that by (4.2),

(4.5) Wi+, T, i+ o) 2 > (1-e),
For any vector w € B} and any ay,...,Qn,
(4.6)
m m 1/2
(3 aigiyu)| < Vi _max_Jail (Zm, ) ) < T Tol - max o)
i=1 =1
where

N — €
Ty = EZ%@% ITol <1+ 1
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Let 1 <4 < m. For a sufficiently large n we have

(3 0T i+ o)) 72 = 1] < [{ys v, (4 o)) V2 - 1| 4 2 lid - 7

(4.7) 2e € 2
<Z 4952,
SHEYY IS
So by (4.6), (4.7),
i 2¢
vi 0, T g + o) 2 1)y 1+¢)-
;(< (Wit ) 1)l < Z=(142) -

Finally, by (4.5), this means that F(v) € %BQ. |

Remark 4.1: Let B be a convex symmetric body whose John ellipsoid is B7.
Then by Remark 3.2 we can take u = 0. It is easy to see that in this case we
can take also v = 0. From the proof it follows that we can construct a convex
symmetric body K and an operator Ry so that the John ellipsoid of K is By,

1
——B K 1
1o CRyKC(1+¢)B

and ||Rg —idjj <1 +e.

5. Lower estimate

In this section we prove Theorem 1.2. For convenience convex centrally
symmetric bodies will be called balls. We show that there exists a ball I’ ¢ R"
which cannot be approximated by any convex body having a small number of
contact points. The ball I" will be constructed by a random procedure. Let
g1(w), ..., g2n(w) € R*, w € 2 be independent Gaussian vectors. This means
that the coordinates of each g;(w) are independent mean zero Gaussian variables
normalized by E ||g;||* = 1. Set

I'(w) = abs conv(g; (w), .. ., gon(w)).

We prove that with probability close to 1 the ball I'(w) has the desired property.
The balls I'(w) were introduced by Gluskin [G1] and they serve as a basic source
of counterexamples in many problems of the Local Theory [G2], [B], [S1] etc.
In particular in [S2] Szarek has shown that for some w the ball I'(w) cannot be
embedded in R™ between B} and CB7,, where C does not depend on n. We use

here a modification of his argument.
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Proof of Theorem 1.2: We begin to prove (1). We take as I" the random ball
I'(w) and show that the probability that d(I'(w), i)} < t for some ball K having
a small number of contact points is less than 1. We construct first a special
embedding of the ball K.

LEMMA 5.1: Let K be an n-dimensional ball in R® having 2m contact points.
Then K can be embedded into an n-dimensional subspace Y of R™ so that the
John ellipsoid of K becomes By* N'Y and, if ey, ..., ey is the standard basis of
R™, then

Pye; € K forj=1,...,m.

Here Py: R™ — R™ is the orthogonal projection onto Y.

Proof: First we embed K into R" so that BS becomes its John ellipsoid. Let

(5.1) id:Zciui®ui, m<m
i=1
be the John decomposition for K. Let fi,..., fn, be the standard basis of R".
We consider R™ as a coordinate subspace of R™. Define vectors vy,...,v, € R™
by
v:(J) = (V/S5u5, fi), i=1,...,n, j=1,...,m.

By (5.1) the vectors vy, ..., v, form an orthonormal system in R™ and we can
complete it to an orthonormal basis vy, ..., vm. Let €1, ..., es be the dual basis:
vi(j) = e;(t) for 4,5 = 1,...,m. Then the vectors \/ciui,..., /CnUm can be
obtained from the vectors ey, . . ., e; by restricting them to the n first coordinates.
We shall consider ey, ..., e as the standard basis of R™. Denote Y the subspace
of R™ spanned by the vectors ui, ..., us and let Py be the orthogonal projection
onto it. Then the John ellipsoid of K C Y is B NY and

Pye; = \/ciu; fori=1,...,m.
Since 0 < ¢; € 1 and u; € K, we get that Pye; € K. Finally consider R™ as a
coordinate subspace of R™. 1

Consider independent Gaussian vectors g;(w), ..., g2n(w) in R* and an n x 2n
Gaussian matrix G(w) whose columns are g;(w), ..., gan(w). Denote by By the
unit ball of the space ¢. Set
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Suppose that for some w there exists a ball K having 2m < (14-co/t?)-2n contact
points for which d(I'(w), K) < t. By Lemma 5.1 we can embed K into a subspace
Y of R™ so that

(5.2) PyBT* C K C PyBY.
Let S: Y — R™ be an operator such that
IS: K - I'w)|l =1, IS I'w) — K|| =d(I'(w),K) <t

We have the following diagram:

id

By K ByFnY
5|
B SCICHN r'w)

By the lifting property there exists an operator A: R™ — R?" so that
|A: By — B#"|| <1 and

(5.3) SPy = G(w)A.
By (5.2), (5.3),

~i-s—lr(w) C K C PyBY = S~1G(w) ABY.
Hence the existence of the ball K implies that

gj(w) € t-G(w)ABY forj=1,...,2n.

Part (1) of the theorem follows now from the next lemma which is close to
Theorem 1.2 of {S2]. For the proof of part (1) we take Py = id in the lemma; the
more general case will be used in the proof of part (2) and in Section 6.

LEMMA 5.2: Let t > 0 and let m < (1 + co/t?) - n for some absolute constant cy.
Let G(w) be an n x 2n Gaussian matrix whose columns are g;(w), ..., gan(w).
Then there exists an w € {2 so that for every operator A: R™ — R,
|A: B — B?"|| < 1 and for every orthogonal projection Py: R® — R* with
dimker Py < con/t?,

(5.4) Pog; () ¢ ¢ - PyG(w) ABY'
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for some j € {1,...,2n}.

Before we prove Lemma 5.2 let us derive from it part (2) of the theorem. As

before we take as I" the random ball
I' w) = G(w)B?", wE L.

Suppose that for some w € §2 there exists a convex body D having m <
(1 + co/t?) - n contact points so that d(I'(w), D) < t. The body D is defined
up to an affine transform. Embed it into R™ so that the John ellipsoid of it will
be B}. There is a linear operator S: R* — R” and a vector u € R so that

(5.5) S Y (w)+u) ¢ Dc SV (w)+u).

o~ | =

Define a ball
K = conv(D, -D).

Then K has the same John ellipsoid as D and the number of the contact points

of K is at most 2m. Set
B(w) = conv(I'w) + u, —(I'(w) + u)).

By (5.5) we have
1 -
?B(w) C SK C B(w).

By Lemma 5.1, we can embed K into a subspace Y of R™ so that
PyBin CKCcC PyBgL.

We shall consider S as an operator from Y to R*.
Let Py: R* — R” be an orthogonal projection so that kerPy = span{u}. Then

P()B(w) = P()[‘(w),
SO
(5.6) %POI‘(w) CPSK C PyI'(w).

Define V:Y — Y by
V= S'_IP()S'.
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By the lifting property there exists an operator 4: R™ — R?" so that
|A: B —» B#"|| < 1 and

(5.7) SVPy = G(w)PA.

We obtain the following commutative diagram:

Br 2, g Y, vk 2., vyBray)

1 5 I

A l B(w) —2— PB(w)

lid
Pw) —— PI'(w)
Thus by (5.6), (5.7) we have that

w)

B S,

%ng(w) c SVK ¢ 8V(PyBY') = PyG(w)ABy",
and hence
Pogj(w) € tPyG(w)ABY forj=1,...,2n.
Part (2) of the theorem follows now from Lemma 5.2 [ |
Proof of Lemma 5.2: The proof of the lemma consists of two steps. First we

estimate the measure of those w for which (5.4) is satisfied for a fixed operator

A. Then we use an e-net argument to derive the lemma.

STEP 1. Let ¢g be a constant to be defined later. Set
6= Co/t2.

Recall the definition of Kolmogorov numbers. Let V be an operator in £5* and
let k < m. Denote
di(V) = min||P.V]|,
where the minimum is taken over all orthogonal projections P, with
k-dimensional kernel.
Let G(w) be an m x 2n Gaussian matrix. By Proposition 4.1 of {S2] for some
absolute constants C, &,C, C;

m—k

P{de(G(w)A) < C-

>1- Cexp(—¢é- (m—k)?)

(5.8) for all A: Bl — B?", Al <1}
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for every k satisfying 2 *m > m — k > Cy(mn®logm)'/®. Take k = (1 — 28)n.

Since the matrix G(w) can be considered as the n first rows of the matrix G(w),
(5.9) d(G(w) A) < dy(Glw)A).

From (5.8), (5.9), it follows that there exists a set E'; C §2 of probability at most
C - exp(—é - 96?n?) so that

d(1-25(G(w)A) < C-36 = C*6

for all w ¢ E; and all A: R™ — R?", ||4: B]* - B"|| < 1.
By the definition of Kolmogorov numbers,

min{||PG(w)A|| |dimker P = (1 — 6)n, ker P D ker Py}
<min{||P1-25nG(w)A| | dimker P_ps)n = (1= 26)n} = d(1_25)n(G(w)A).

Hence there exists an orthogonal projection P: R™ — R™ depending on G(w)A
so that rankP = én,

(5.10) ker P D ker Py
and
(5.11) PG(w)ABy* C C* - PBy".

It follows from (5.10) that PPy = P.

We are going to estimate the probability that ||Pg;(w)|| < Cté for all j =
1,...,2n. For P which does not depend on w it can be easily done. Although this
is not the case, this estimate will be essentially the same as for P independent of
w. More precisely, let @Q: R*® — R?" be an orthogonal projection onto Im(A) and
set @ = id — Q. Then G(w)QA and G(w)QA are independent random matrices.
Note that in fact the projection P depends only on G(w)|im(a)4 = G(w)QA.
Since rank(A) = m, rankQ = 2n — m > n/2. Let § be a normalized Gaussian
vector independent from G(w). It follows from [S2, p. 917-918] that there exist

absolute constants C’ and a, so that

.....
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Note that P§ is a dn-dimensional Gaussian variable normalized by E ||Pg|* = 6.

Thus the above expression is less than
(el/2cl . 3t- C*\/S)énQan'

Set ¢o = (€3/2 . 3C*C")2. We conclude that

3 *
(5.12) P { max_ ||Pg;(w)]|| < © CO} < exp (_2‘& .n2) _
j=1,...,2n t t2

ey

STEP 2: The e-net argument. Using (5.11) and (5.12) we prove that for some
w and for all operators A there exists 7 < m, so that

Pogj (w) ¢ 3t- P()G(W)AB%1

For A > 0 put
Ey={w| ||G(w): B3* — Bp|| > A}.

By Lemma 2.8 of [S2], there exists a A for which P(E)) < exp(—Cn/8) for some

absolute constant C. Set
_ C*Co

I
and select an e-net A from the set {4: R™ — R?" | HA: B - B| <1} in
l|-lla_o norm. By Claim 4.5(b) of [S2] we have

Cm - (2nlog2n)'/?

<

card A < exp ( ) < exp(Ct*n*?log!? n) < exp (%623 . n2)

provided t* < (aco/C) - n*/*log™"/% n. Hence with probability at least

1—card A -exp (—?(Z—CO- -n2) - P(En)

2

ac ~ . 9c3
Sl—exp(——tyo-nz) —C-exp(—c-;i—o-nr")

for every A € A there exists a projection P: R™ — R™ with rankP = con/t? so
that

(5.13) PPy =P,
(5.14) PG(w)ABD ¢ c*j—g .PBD,



116 M. RUDELSON Isr. J. Math.

and

3C*
(5.15) _max |[Pg;(w)l| > =2,
j=1,....2n t

Choose w ¢ E) for which (5.13) — (5.15) hold for every A € A. Let A: R™ — R?"
be an operator, ”A: B — Bf"“ < 1. There exists an operator A € A so that
”A — A|| < e. Let P be a projection for which (5.13) - (5.15) hold for A. Suppose
that for every j =1,...,2n,

POgj (w) et P()G(UJ)AB?
Then by (5.13), (5.14) for all j

Pg;(w) €t PG(w)ABY' +t- PG(w)(A — A)B}'

2C*C0 - m
c< ; +t-HG(w)H-H(A—A)“> - PBy".
Hence " -
_max [[Pg; ()] £ = +the < =
7j=1,...,2n t
and this contradicts (5.15). |

6. Dvoretzky—Rogers type factorizations

In this section we use the notation ||T: X — Y| as well as ||T: Bx — By]|| for
the norm of an operator T between Banach spaces X and Y with unit balls Bx
and By.

The classical result of Dvoretzky—Rogers states that for every Banach space
X of dimension n? there exists an n-dimensional subspace ¥ and a factorization
id = oo 3 of the identity operator in R, so that ||3: £F — V|- |ja: Y — €Z.]| < 8.
This means that some section of the unit ball of X can be embedded between the
Euclidean ball and the cube. In [S2] Szarek proved that for every n there exists
a convex symmetric body I which cannot be embedded into R™ between By and
t-B" ift < C(n/logn)Y/'°. However in [B-S] it was shown that every convex
symmetric body possesses a section of a proportional dimension & which can be
embedded between B and C - BX for some constant C depending on k/n. The
estimate of C(k/n) was improved later in [S-T], [Gil], [Gi2]. Up to now, the best
result is the following
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THEOREM 6.0 ([Gi2]): Let X be an n-dimensional Banach space. For every
e > 0 and for some m > (1 — €)n there exists a factorization id = o o 3, where

o €5~ X|)-19: X — ez < <.

Using the decomposition (1.4) for convex symmetric bodies we can construct
a factorization which is somehow dual to that of Theorem 6.0. Instead of em-
bedding a section of the body, we embed the entire body between the Euclidean
ball and a cube of larger dimension. More precisely, we have the following

THEOREM 6.1: Let X be an n-dimensional Banach space. For every € > 0 there
exist m < C(e) - n-log®n and an orthogonal projection P: R™ — R™ of rank n
having the following factorization through the space X: P =T o S, where

(6.1) |T: X — €20 -||IS: 65" = X|| < (1 4¢) - ||P: €5 — €] .

Proof: Let B be the unit ball of the space X*. Then the John ellipsoid of B is
B%. Applying Theorem 1.1 to the body B, and using Remark 4.1, we construct a
convex symmetric body K whose John ellipsoid is Bf and for which (1.3}, (1.4)
hold. Let Y be a Banach space whose unit ball is K. We construct first the
factorization (6.1) for the space Y.

Define an operator T: Y* — R™ by

Ty*:(\/CTl'<y*,u1>,~~-,v(lm'(y*,um»v y* ey

Note that if the Euclidean structure in Y™ is defined by the John ellipsoid of K°
then T ¢35 — {7 is an isometric embedding. Since uy,...,u,, are contact points
of K,

”T Y* — 6'"” = max ./a;.

, ey

Define now an operator S: R™ — Y* by
= Zai(z Tu;)u
i=1
and let P =T o0 S. Then P'(TY*)J— =0 and for every z = T'y* we get

Pz—ZalTy Tul Zm:aly u;)Tu; =Ty* = 2.

i=1 i=1
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So P is an orthogonal projection onto the space TY™*. Since S: ¢ NTY* — {3

is an isometry,
1P 63 — 07 = ”P Nty - 4’”“ - ”T Y* —»fm”
By Remark 4.1 there exists an operator Rp.X — Y™ so that
[Ro: X = Y*||-|[R7: Y = X|| < (1+¢€)*

To end the proof, setT:j“oRo andS:RO_loS’. ]

Remark: Note that for the projection P constructed in the proposition we have
|P: €5 — 2| = max;=1,.. .m /@5 < \/m while the minimal norm of
P: 03" — {7 over all orthogonal projections of rank n is not smaller than W— m.

Applying Theorem 1.1 and Remark 4.1 to the calculation of the 75 norm of the
identity operator from a Banach space X to the Euclidean space, whose norm
is defined by the John ellipsoid of Bx, we obtain the following refinement of
Theorem 3.2.5 of [T-J]:

THEOREM 6.2: Let X be an n-dimensional Banach space and let B} be the
ellipsoid of maximal volume contained in its unit ball Bx. Then for every ¢ > 0
there exists the following factorization of the identity operator from X to £3:

x 4,

(6.1) u l ]v
m \/n/m-id m
e —— &

Here ||U|],||V|| < 14 and m < C(e) - n - log® n.

Proof: Let B be the unit ball of the space X*. Then the John ellipsoid of B is
B3}. Applying Theorem 1.1 to the body B, and using Remark 4.1, we construct a
convex symmetric body K whose John ellipsoid is By and for which (1.3), (1.4)
hold. Let Y be a Banach space whose unit ball is K. We construct first the
factorization (6.1) for the space Y*. Define an operator U:R* —» R™ by

r 7% m m * *
Uy* = (gal-(y*,ul),...,—n—am-@ ,um)), yrevr,
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Since u1,...,un are the contact points of K and Za; < 1+¢ fori = 1.
“ff: Y* - ” <1+e¢. Letey,..., e, be the standard basis of £3'. Define now

m
~ n
= — E 61:@'&1'.
m
=1

an operator V:R™ - R" by

zeB;",yeBg}

™m
ax{z o,

i=1

m m 1/2
(Z T, ;) ) (Z(y,ui>2> z€ By ye B

i=1 i=1

IA

=
I
SI: ﬁ!

A
=
&

n .
(Za,- Y, u;) > y € BY nax —n—lai‘1 <(1 +s)’1/2.
1=1...m

It follows from (1.4) that

Vo —idgm o U = idgs.
m

We remind the reader now that by Remark 4.1,
|Ry: X = Y*|| <142 and ||[(R§) ™65 — 6] <1+e.

To end the proof set

U=UoRy, V=(Ry) 'oV. 1

Using the results of Section 5 we obtain a lower bound for the norm of the
factorization of Theorem 6.0.

THEOREM 6.3: For every ¢ > 0 and n > n(e) there exists an n-dimensional
Banach space X so that every factorization id = a o 8 of the identity operator
from €3 to £ with m > (1 — e)n satisfies

C
lloz 3% = X[ |8: X — €3]l 2 7
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Here C is an absolute constant.

Proof: Let X be a Banach space whose unit ball is the polar of the body I'(w)

constructed in Section 5:
Bx =T'w)*={z e R" | {z,1(w))] <1,...,(x, g2n(w))] < 1}.

Here g1(w),...,gon(w) € R™ are independent Gaussian vectors. We show that
for some w the space X has the property claimed in Theorem 6.3.
Suppose that id = & o § is a factorization, so that

la: B — Bx||<s,  [|8: Bx = B2 < 1.

Recall that we use the notation ||T: K — D|| for the norm of the operator T
between Banach spaces, whose unit balls are K and D. Put Z = a(R™), K =
I'(w)N Z. Denote by v the operator «, considered as an operator from R™ to X,
and by 5 the operator 3 restricted to Z. Then v~! = 5. Passing to the adjoint
operators, we get

[lv*: K° — B < s.
Note that A'° = PyI'(w) for some orthogonal projection Fp for which dimker Fp <

en. We have the following diagram:

By T, K° Y. s.Br
P"T
B#n G, I'(w)

where G(w) = (g1(w), ..., g2n(w)) is an n x 2n Gaussian matrix. By the lifting

property of ¢7*, there exists an operator A: R™ — R?", so that
PGw)A =7
and ||A: B]* -» B"|| < 1. Since v*K° C s- B*, we have
P l'(w)=K°Cs-n*By =s-PiG(w)AB7".
Applying Lemma 5.2 with ¢ = (co/¢)'/?, we obtain that

s=|la: Bt > I'w)°l>t. 1
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7. Submatrices of an orthogonal matrix

In [K-T] B. Kashin and L. Tzafriri posed the following problem:

Let e > 0 and let n, M be natural numbers, n < M. Given an n x M matrix
A whose rows are orthonormal, find a subset I C {1,..., M} of smallest possible
cardinality so that for all x € {3

(1—e) o] < % RrATZ| < (1+¢) -zl .

Here R;: RM — RM is the orthogonal projection onto the space span{e; | i € I},
where {e;}, is the standard basis of RM.

Under an additional restriction that all the entries of A have the same absolute
value 1/+/M, they proved that one can take

1] < —Cz -n?logn.
€

Let x1,...,zp be the columns of the matrix A. Since the rows of A are

orthonormal, we can decompose the identity operator in R™ as follows:

M
(7.1) id=Y z;9g;.
i=1

Using the technique of Section 3, we prove the following

THEOREM 7.1: Let A = (a; ;) be an n x M matrix, whose rows are orthonormal.
Suppose that for all j

n
(7.2) Y a2 < i -2,
Then for every e > 0 there exists a set I C {1,..., M} so that
(7.3) [I] < C(e) -t -nlogdn

and for allx ¢ R"

(7.4) (1-e) 2]l < %-nmﬂxn <(+e) fal.
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Remark 7.1:  Ifall the entries of A have absolute values 1/v/M, then Y 7, a2, =

n/M for all j and so one can take
[I] < C(e) - nlog®n.

Remark 7.2: The condition (7.2) may be weakened. However, without any
condition the number of elements of I can be of order M. Indeed, consider an
(M +1) x (n+ 1) matrix

where A’ is an M x n matrix with orthonormal rows, all of whose entries have
absolute value 1/v/M. Then, since (7.4) implies that 1 € I, we have that
VM/I <1 +e.

The proof of Theorem 7.1 is similar to that of Lemma 3.1 and actually to that
of the main lemma of [R]. Let I; be a random subset of {1,..., M} defined as in
the proof of Lemma 3.1. Then

M
sup (2-[|RnATa|*~1) = |2- Y 20, —id|.

llz||=1 jeh
By Lemma 3.2 this expression is less than
” 1/2
C-logn-\logM - r?axMijI]- Z:cj ® x; = C’~t-‘/%logn\/logM
1=1,..,

j=1
for some set I; satisfying |[I;| < M/2. To obtain the set I we iterate this step
until (7.4) holds.
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