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ABSTRACT 

Let B be a convex body in R n and let C be an ellipsoid of minimal volume 

containing B. By contact points of B we mean the points of the intersection 

between the boundaries of B and g. By a result of P. Gruber,  a generic 

convex body in ~n has (n ~- 3) �9 n / 2  contact points. We prove that  for 

every E > 0 and for every convex body B C Rn there exists a convex body 

K having 

-~ < C(~) -  . log 3 n 

contact points whose Banach-Mazur  distance to B is less than  1 § e. 

We prove also that  for every t > 1 there exists a convex symmetric  

body F C R n so that  every convex body D C R n whose Banach-Mazur  

distance to F is less than  t has at least (1 + c0/t 2) �9 n contact points for 

some absolute constant  co. 

We apply these results to obtain new factorizations of Dvoretzky-Rogers 

type and to estimate the size of almost orthogonal submatrices of an 

orthogonal matrix. 

1 .  I n t r o d u c t i o n  

Let K be a convex body in ](n and let s be the ellipsoid of minimal volume 

containing K. By the contact points of K we mean the points of the intersection 

between the boundaries of K and s The importance of contact points follows 

from the special role played by the minimal volume ellipsoid in the Local Theory 

of Banach Spaces and Convex Geometry. In particular, a special family of contact 
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points was used by K. Ball to show that the n-dimensional simplex and cube have 

the maximal volume ratio among all convex and convex symmetric bodies in ll{ n 

respectively ([B1], [B2]). Contact points arise also in the problem of estimating 

the Banach-Mazur distance between a convex symmetric body and the cube of 

an appropriate dimension ([B-S], [S-T], [Gil D. 

To study contact points we need to introduce the notion of John's decompo- 

sition. By a celebrated theorem of F. John [J] there exists a unique ellipsoid of 

minimal volume containing a given convex body K C R n . This ellipsoid will be 

called the John ellipsoid of K. If the body K is embedded in N n so that its John 

ellipsoid is the standard Euclidean ball B~, then there exist M <_ N = (n + 3)n/2 

contact points xl . . . .  ,XM and M positive numbers Cl, . . . ,CM satisfying the 

following system of equations: 

M 
(1.1) id -- E cixi | xi, 

i=1 
M 

(1.2) 0 = E cizi. 
i=1 

Here by id we denote the identity operator in R n. Besides it, John's proof shows 

that  if/~" is a convex subset of B~ containing the points X l , . . . ,  XM, then B~ is 

the John ellipsoid of/~'. The system (1.1) is called the John decomposition of 

the identity operator. This notion will be crucial in the study of contact points. 

For a symmetric convex body it is enough to take M < Ns = (n + 1)n/2 points 

in (1.1). Note that Ns is the dimension of the space of symmetric matrices and 

N = N s + n .  

Clearly, the number of contact points of a convex (respectively, convex sym- 

metric) body in R n cannot be less than n + 1 (respectively, 2n). However, for 

most convex bodies this number is much bigger. Before formulating this precisely 

let us recall the definition of the Banach-Mazur metric in the space of convex 

bodies. 

Let ~ be the set of all n-dimensional convex bodies. For K, B C /~ define a 

distance between K and B as 

d(K, B) = inf{c I K + u C T B  C c ( g  + u)}, 

where the infimum is taken over all vectors u E N n and all invertible operators T. 

If K and B are symmetric, then u = 0 and d becomes the usual Banach-Mazur 

distance. 
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P. Gruber [Gr] proved that the set of all convex bodies for which the number 

of contact points differs from N (Ns in the symmetric case) is a set of the first 

Baire category in ~. In Section 2 we give a simpler proof of this result. It follows 

also from the proof that the closure of the set of convex bodies having less than 

N contact points is nowhere dense in t~. 

However, it turns out that every convex body can be approximated by another 

one, for which the number of contact points is practically of order n. We prove 

the following 

THEOREM 1.1: Let B be a convex body in R '~ and let e > 0. There exists a 

convex body K C R ~ , so that d(K, B) <_ 1 + ~ and the number of contact points 

of K with its John ellipsoid is less than 

(1.3) r e ( n ,  e )  = C ( e )  . n . log a n. 

Moreover, if  K is embedded in ]~n so that its John ellipsoid is the standard 

Euclidean ball B~, then the identity operator on R ~ has the following 

decomposition: 

(1.4) i d = E a i u ~ |  , 
i=1 

where m <_ m(n,  e), ul . . . .  , um are the only contact points of K with B~, 

(1.5) E aiu~ = 0 
i=1 

and for every i, 1 -  ~ _< ~a~m _<1+c. 

The proof of Theorem 1.1 consists of two steps. In Section 3 we show that,  

given a John decomposition generated by the contact points Xl . . . .  , XM, we can 

find a subsequence xil . . . .  , xi,~, remove from the John decomposition the other 

points and change the coefficients c~ so that the operator we get will be close 

to the identity. This method was previously introduced in [R] for convex sym- 

metric bodies. The proof is based on estimates of the supremum of some family 

of Bernoulli random variables. Then in Section 4 we construct a body K,  so 

that  this approximate decomposition of the identity operator becomes the John 

decomposition for K. 
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Actually we are able to improve the estimate in (1.3) to 

m _< C ( c ) . n . l o g n .  

This can be achived by applying Talagrand's method of majorizing measures 

([T]). Since however the proof of this improvment is much more involved than 

that of (1.3), we shall present it in a different paper. 

In Section 5 we study the question how much the number of contact points can 

be reduced, if instead of c-approximation, we approximate a given body B by 

bodies whose distance to B is bounded by some large number t. We show that 

there exists a convex symmetric body F C [in whose number of contact points 

cannot be reduced to n + o(n). More precisely, we prove the following 

THEOREM 1.2: For every t > 1 and for every n > no(t) there exists a convex 

symmetric body F C R ~ such that 

(1) every convex symmetric body K satisfying d (F ,K)  <_ t has at least 

(1 + co/t 2) �9 2n contact points; 

(2) every convex body D satisfying d(F, D) <_ t has at least (1 + co/t 2) �9 n 

contact points. 

Here co is an absolute constant. 

In Section 6 we use Theorem 1.1 for a symmetric body to derive a factorization 

theorem of Dvoretzky-Rogers type and Theorem 1.2 to obtain a lower bound 

related to such a factorization. 

Finally, in Section 7 we apply the results of Section 3 (actually those of [R]) 

to solve a problem of B. Kashin and L. Tzafriri. 

Let us introduce some notation. Let K C R n, B C R TM be convex bodies. 

If 0 6 K then by [['[[K we denote the Minkowski functional of K.  For a linear 

operator T: R TM --* ]R n define a norm as 

[[T: B --* K[[ = sup{[]Tx[[ K [ x 6 B}. 

If K and B are symmetric this is a usual operator norm. The n-dimensional 

Euclidean ball will be denoted by B~. Instead of I[XlIB9 and liT: B~' ~ B~I ] we 

write ]lxll and IIT]I respectively. The letter 3 ~ stands for probability and the letter 

E for the expectation of a random variable. By C, c, C etc. we denote absolute 

constants whose value may change from line to line. 



Vol. 101, 1997 CONTACT POINTS OF CONVEX BODIES 97 

ACKNOWLEDGEMENT: I would like to thank Professor Lindenstrauss and 

Professor Gluskin for helpful discussions. 

2. Typical  number  of  contact  points 

Let /C (K:) be the set of all n-dimensional convex (convex symmetric) bodies 

equipped with the Banach-Mazur metric. It is known that ~ and K: are complete 

metric spaces. Denote by / )m the set of all bodies B E/C which have at most m 

contact points. Similarly,/)m stands for the set of all B E/C having at most m 

pairs of contact points. Obviously, none of the sets/)m, ~D m is closed. However 

we have the following 

THEOREM 2.1: 

(1) For every m, n <_ m < Ns, c//)m is a nowhere dense subset of c17)m+1. 

(2) IC\I)N8 is a set of the first Baire category in IC. 

Note that since/C is complete, it follows from the theorem that a generic (in 

the sense of category) convex symmetric body has exactly Ns contact points. 

For a general convex body we have a similar result. 

THEOREM 2.1~: 

(1) For every m, n <_ m < N, clDm is a nowhere dense subset of clf)m+l. 

(2) IC\13N is a set of the first Baire category in ~.  

Before proving the theorem let us introduce some notion. Let K be an n- 

dimensional convex body. We say that K is in standard position if the John 

ellipsoid of K is B~. Let (1.4), (1.5) be a John decomposition for K. Note 

that  this decomposition is not uniquely defined. By the length of the John 

decomposition we mean the number of different terms xi | xi. This notion was 

studied by A. Pelczynski and N. Tomczak-Jaegermann [P-T-J]. In particular they 

proved that for every n _< m <_ N8 there exists a convex symmetric body which 

has a unique John decomposition of length m. 

Proof of Theorem 2.1: Let Cm be a set of all n-dimensional convex symmetric 

bodies which have a John decomposition of length at most m. Obviously, for 

m _< Ns we have that :Din C Cm. Moreover, 
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LEMMA 2.1 : If  m < Ns then cl7)m = Cm. 

O 0  Proof." We prove first that  the set Cm is closed. Let {/Q}l=l C C,, be a sequence 

of convex symmetric bodies converging to some body K E /C. Suppose that  Kt 

are taken in standard position and the John decomposition for KI is 

id E ~1 l = C i X  i @ X i .  

i = l  

I l Passing to a subsequence, we may assume that  c i ~ ci and x i --* xi for every 

i < m. Hence, we have IIxiI] = 1 and 

m 

(2.1) id = E cixi | xl. 
i = l  

Let Tl: R n --* R" be an operator so that  

d~ 1 �9 Kt C TIK C Kt C B~, 

where dt = d(Kt, K)  --~ 1. Passing again to a subsequence, we assume that  Tt 

T. Then T K  C B~ and xi E TK for all i. Thus, (2.1) is a John decomposition 

for K.  

Now let K E Cm and let e > 0. We construct a new body Ke E 7),~ so 

that  d(K, K~) < 1 + e. Let K be in standard position and let (2.1) be a John 

decomposition for K.  Define K~ by 

( 1 "K, x l , . . . , x m ) .  K ~ = a b s c o n v  l + e  

Then K~ C B~ and OK~ Cl OB~ = { x l , . . . ,  Xm} �9 So, B~ is the John ellipsoid of 

K~ and 
1 

- - . K c K ~ c K .  I 
l + z  

To obtain (1) we have to prove now that  Cm is nowhere dense in Cm+ 1. The 

proof goes by induction on m. For m = n - 1, Cm = 0, so the statement is 

trivial. Let n o w / ~  E C,~. For given ~ > 0 we have to construct a new body 

Ix" E Cm+l\Cm so that  d( / ( , /~)  _< 1 + e. By the induction hypo thes i s / f  can be 

approximated by a body K E Cm\Cm-1. Suppose that  K is in standard position 
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and (2.1) is the John decomposition for K.  We use the construction of Lemma 

2.5 of [P-T-J]. Note that  the tensors xl | xi are linearly independent. Indeed, if 

0 = ~ aix i | xi 
i = 1  

then 

m 

id = E ( c i  - aa~)x~ | xi 
i----1 

and we can choose a so that  all the coefficients except some io are positive and 

% - cm~ o = 0. This contradicts K ~ Cm-1. 

Without  loss of generality we may assume that  the vectors x l , . . . , x n  are 

linearly independent. Then the tensors xi | xj + xj | x~, i, j = 1 , . . . ,  n form a 

basis of the space of symmetric matrices. Since m < Ns, there exists a pair i , j  

with i, j < n, so that  

xi | xj + xj | xi ~ s p a n ( x l |  | Xm). 

Suppose that  this holds for i = 1, j = 2. For c~ > 0 define 

t ~ t X l  O~ t X l  O/ 
z0 = ~ x 2 ,  z, - ~ ~x2,  z~ = ~ + ~x~,  

z~ z~ 
Z l -  IIz~ll' z~ = IIz~ll 

Then 
I I I ! ! 

z 0 | z 0 + z I | z I + z 2 | z,~ = X l |  + o~ ~.x2 | x2, 

so we have the following representation of the identity operator: 

t 2 t 2 e l  
(2.2) id = cl IIzlll "z l |  IIz211 .z2| c2 .x2| cixi|  

i = 3  

For sufficiently small c~ all the coefficients are positive. 

Define now 

/~ = abs c o n v  K ,  z l , z 2 ,  x 2 , . . . , X m  �9 

For small (~ and e, /~ is arbitrary close to K.  We claim that  /~ E Cm+l\Cm. 

Indeed, 

Xl | x2 + x2 | xl E span(z1 @ Zl, z2 | z2, x2 | x2). 
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Hence, 

dimspan(zl | Zl,Z2 | z2,x2 | X2, . . . ,Xm | Xm) = m + 1 

and this means that the decomposition (2.2) is unique. | 

(2) Let c > 0 and let ~'(~) be the set of all bodies K E/C having N, + 1 contact 

points, so that  if K is taken in the standard position, then the mutual distances 

between these points are at least ~. As in part (1) it can be easily shown that  

~-(~) is closed in the Banach-Mazur metric. Since ~'(r N •N, = (~ and :DN, is 

dense (by part (1)), the set ~'(r is nowhere dense. We have that 

u , 
nEN 

The proof of Theorem 2.Y is similar, although it is more technical and we shall 

only sketch it. We proceed as in the proof of Theorem 2.1. The only difference 

is that  (2.2) is not a John decomposition since 

m 

~=clllzill~.zx+c211z'~ll2.z2+ c2-  .x2+~-~c,x,| 
i=1 

i / C1 ~'2 
--c,(llz~ll zl + 11411 z= - x , ) -  ~ - x =  # o 

and (1.4) does not hold. However, u C span{z~,x2} and IluJl = o ( ~ ) ,  so we can 

find coefficients dl and d2 which are close to Cl I[z~ [[ and c 2 -  c la2 /2  respectively 

so that  the operator 

(2.3) 
m 

T = d l z l  | zl  + cl [[z~[] z2 N z2 + d2x2 | x2 + E cixi N xi 
i----3 

satisfies liT - idll = O(a  2) and 

m 

I Z (2.4) dlZl "]- e l  IIZ211 2 "Jr d2x2 "1- E cixi = O. 
i . .~3 

Thus (2.3), (2.4) is an approximate John decomposition, and we can use the 

construction of Section 4 to obtain an approximating b o d y / ~  with the desired 

properties. | 
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3. Approximate John d e c o m p o s i t i o n  

Before constructing a new body with a small number of contact points, we find 

for a given body an approximate decomposition of the identity operator. We get 

this decomposition in several steps. At each step we select randomly a subset of 

the contact points and after it move the body so as to preserve (1.5). 

LEMMA 3.1: Let B be a convex body in R ~, so that its John ellipsoid is B~. 

Then there exist 

m < C(e) .  n .  log 3 n 

c(~) contact points x l , . . .  ,xm and a vector u, HuH < ~ ,  so that the identity 

operator in R n has the following representation: 

m 

(3.1) id = n ~ ( x ~  + u) | (x~ + ~) + S, 
m 

where 

(3.2) 

and 

i=1 

m 

~(=,+u)=O 
i=1 

(3.3) IIS: ~ ~ t~ll < ~. 

Remark 3.1: Denote/3  = B + u. Then from (3.2) it follows that 0 E Int/} and 

the Minkowski functional for /}  is well defined. 

Proof: Let e > 0 and let 

k 

id = E ~J ~J | ~J, 
j = l  

k 

~--~ e~-j = o 
j = l  

be a John decomposition for the body B. Set M = [4~___kk] and Nj = [ - ~ ]  

or Nj = [~A~_] + 1, so that ~ k = l  Nj = M. Form the sequence x l , . . . , X M  by 

repeating Nj times each term ~j. Define 

M 
n 

,--1 
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Then 

and 

Put  

k 

j = l  

,:1( 
M 

1 E X i ,  UO -~- - -  - ' ~  

i--1 

M 
n 

To = ~ ~ ( x i  + uo) | (xi + uo). 
i=1 

Then 

n M | uo 16n'~2 I I T o -  :~oll = ~E(x~| = ~11,,o | uoll < 

Let P l , . . . ,  PM be independent Bernoulli variables taking values 0 and 1 with 

probability 1/2. Define an operator 

n E (xi + uo) | (xi + uo), ~ =2~ 
iE I1  

where I1 is the set of indices i for which tti = 1. With probability greater than 

3/4, M/4 <_ Jill < 3M/4. To estimate the norm of T1 - To use the following 

LEMMA 3.2: Let Yl,...,YM be vectors in ~'~, el , . . . ,eM be independent 
Bernoulli variables, taking values 1, - 1  with probability 1/2. Then 

Yi ~i=1 Yil11/2 
M 

E E e i Y i |  < C l o g n v / ~ M  �9 max [lYI[I" ~...~Yi| 
i = l  i= l , . . . ,m  

for some absolute constant C. 

The proof of Lemma 3.2 is based on entropy estimates of Rademacher random 

variables and we postpone it to the end of the section. Taking Yi = xi + Uo, we 

get from Lemma 3.2 that, with probability greater than 1/2, 

(3.4) lIT1 - Toll < 4C logn 1v/i-~M. 
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Denote  

Since EM,(xi + uo) = O, 

1 

iEIa 

FI H m(z~ + uo) = E ( ~  - �89 + uo) ___ v ~ .  
i = l  

Hence we can choose the set I I  so tha t  lilt >_ M/4, Ilulll _< 4 / x / ~  and (3.4) 

holds. Define 

,n 
T~ = 2}7 ~ ( x {  + ~o + Ul) O (x{ + uo + 41). 

iEI1 

Then  
2nlhl 32n 

Proceeding this way, we construct  by induction a sequence of sets {1 . . . .  , M}  = 

Io D I1 D . . .  D Is and a sequence of vectors Uo, U l , . . . ,  u~, so t ha t  

3 
1%+,/-< U I%t, 

4 
II~ll <_ --~AJI' 

~ ( x ~  + uo + . . .  + ~ )  = 0, 
iElj 

and for the opera to r  

2 j �9 n 
T j -  ~-  ~ ( x ~ + u o + . . - + u J |  

iEIj 

one has 

(3.5) IITj+I - TjH < C" ~ j ~  " logn" ~ .  

Summing  the inequalities (3.5) we get 

[ l id - Tsl [ ~ [[id - To[ I -~ I]To - TI [  [ - ~ - . . . - [ - [ [ T s _  1 - Ts[  I 

< ~- + c .  v~.  log~. ( ~  + lv~lZ~4 § ~/. 
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Choose s so that the last expression will be less than e/2. Simple calculations 

show that  in this case [18[ <_ C(e)nlogan and 

c(~) 
IIU0 -{- Ul + ' ' "  "b Us[I 

x/-n log s/2 n 

Denote m = Ilsl, u = ul + u2 + . . .  + us and renumerate the sequence 1 , . . . ,  M, 

so t h a t / 8  becomes its initial segment {1 , . . . ,  m}. Then, (3.2) holds and 

m 

(3.6) [lid - A E ( x i  + u) | (xi + u)[ I < 2 '  
i=l 

where A = 2~n/M. To get (3.1), (3.3) from this, take the trace. By (3.6), we 

have I n - A ' m l  < �89 so 

i d -  xi + u) | (xi + u < s. | 

Proof of Lemma 3.2: Without loss of generality, we may assume that 

maxi=i ..... m ]lYill = 1. By an inequality of Dudley [L-T], 

\112 
E ~iYi I~. < C .  ( log N(B~, = _ ~ , u ) )  ~ u .  

i=1 [[y[[_<l i=1 0 

Here N(B~,  r u) is the maximal cardinality of a u-net in B~ in the metric 5, 

where 
I V  TMM J , ~2x2~ 1/2 

(f(x,y) = ~ ( ( x , y , ) ~ - ~ y  y~ j ) �9 
i=l 

Denote [lYlIy = supi=l ..... u I(Y, Yi)l. The metric 5 can be easily estimated by this 

norm: 

~(z ,y )  _< ((x,y~) + (~ ,~0)  2 sup t(x - ~,yi)f  
i=l,...,M 

M I 1/2 

< E y i |  . l l x + y l l ' l l x - y l l v < _ p ' l l z - y l l v ,  
i=1 

Iiz~ II 1/~ where p = 2 1 Yi | Yi . So 

( ') N(B~,  r u) <_ N B~, 11" IIv, ~u , 
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and 

<cp. (logN(B ',tl LlY,v/) 1/2 �9 dr. 
o 

If v > 1, then N(B~, H" [Iv,v) = 1, because HY[[y < [[Y[I. A standard volume 

estimate gives 

/ - /  II ll , v/<_ (1+ 

By an inequality of Pajor and Tomczak-Jaegermann [Pa-T-J], we get 

(3.8) ( l o g g ( B ~ , l l  Ily,v)) 1/2 -cE < Ilglly, 
v 

where 9 is a standard Gaussian vector in the space ~n. The estimate of E IlglIy 
is well known. Denote gi = (g, xi),i = 1 . . . .  , M. Then 

E, ,g, ,y  = E  sup '9i' ~ E (~ 'g i [ l~  1/l~ 
i=l,...,M i=1 \ - -  / 

(3.9) ( M ) 1/logM 
< E E I g i l  l~ < C M 1 / I ~  

i=1 

Combining the estimates (3.7), (3.8) and (3.9), we have 

(logN(B~,[ I iiy,v))~/2 2) 1/2 �9 d v < f ( n . l o g ( l + v )  dv+ c ~ d V v  
o o A 

_ < A ' v ~ ' l o g ( l + 2 ) + C ' ~ ' l o g  1 .  

To end the proof choose A = 1/v/-n. | 

Remark 3.2: Let B be a convex symmetric body whose John ellipsoid is B~. 

Let a ] , . . . ,  am be positive numbers and Ul , . . . ,  Um be contact points so that (1.4) 

holds�9 Then, adding to the collection u l , . . . ,  um the points - u l , . . . , - u r n ,  we 

provide (1.5)�9 Thus, in symmetric case we can always set u = 0 in Lemma 3.1. 

Remark 3.3: One cannot make the coefficient in Lemma 3.2 smaller than 

Cx/~gn. Indeed, suppose that M = n �9 k and yi = ej for (j - 1)k < i <_ jk. 

Then, 

~ e i y i  =- ~ ci ej|  = max E �9 
j=l  \ i=( j -1)k+l  j=l  ..... n i=1 i=(j-1)k+l 
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For sufficiently large k, 
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k-1/2 ~ - 1  ei behaves like a Gaussian variable, so 

1/2. 

4. C o n s t r u c t i o n  of  t he  a p p r o x i m a t i n g  b o d y  

Suppose that the body B is embedded into ~ so that its John ellipsoid is B~. 

Using the approximate John decomposition (3.1) - (3.3) we construct a body K 

close to B, having m contact points with its John ellipsoid. 

L e t ~ > 0 .  D e n o t e / } = B + u ,  Y i = X ~ + u a n d s e t  

m 

T = i d -  S = Yi | 
i : l  

where IJSl/< ~/8. By (3.2) 

(4.1) 
m 

E Yi = 0. 
i = 1  

Let v ~ ]~ ,  and Ilvll < e/x/-n be a vector, which we shall define later. Denote 

m 

m E Tv = N (yi + v) | (~i + v), 
i----1 

Rv = Tlv/2 and s = g~ = R~B~. By (4.1), for sufficiently small e, 

C e 
(4.2) IIT~ - idl[ _< JlTv - rl[ + [IS[[ _< n .  [[v | vii + IIS[I _< ~2 + g < ~" 

So 

(1 -  "~) s c B~ c (1+ 4) 8" 

Denote 
1 

z~ = [ly~ + vile "(y~ + v) 

and set ) R =conv  B + v), Z l , . . . , zm �9 

Since B C B~ and IIvll < e/v '~,  we get that the only contact points of K with s 

are Z l , . . . ,  zm. We prove now that 

1 ~( /~+v)  C/~  C (1 + 2e)(/~ + v). 
1 +  
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(4.3) id = / ~ v  1 

where 

The first inclusion is obvious. To prove the second, let x E /x~ and consider a 

decomposition of x 
m 

C~0 
b + E ~ x =  l + e  

i=1  

m w h e r e b E / } + v ,  a i _ > 0 a n d ~ = o a ~ < l .  Note t h a t y i = x i + u ,  / } = B + u  

and since xi C O B ,  y~ + v E 0([~ + v), so I]Y~ + vllt}+v = 1. Since 

C(~) 
Ilull __ v~log3/2 n' [Ivll <_ ~ ,  

we have Ily~ +v[Ic _> 1 - ~. Then from the triangle inequality it follows that  

m 1 

..so + ~ ' "  IlY~ + vilE" Ilyl + vll~+v Ilxll~+~ <_ 1 + ~ i = 1  

1 m so + ~ ~ i < _ 1 + 2 s -  
< 1 + ~  

i = I  

Define now a decomposition of the identity operator 

0 T o  Rv I ~-- ~ n____. 'lYi ~- I)1' 2. Rvlz i  Q Rvlz i  = ~ aiui | u{, 
7n 

i = l  i=1 

n LI2 
ai = - -  " llyi + v , u~ = R~ly l .  

m 

Finally, define a body K = R~-I/~. Then K C B~ ~ and the only contact points 

of K with B~ are u l , . . . ,  urn. If the vector v is chosen so that  

m 

(4.4) E a i u i  = 0 ,  
i = l  

then (4.2), (4.3) become a John decomposition of the body K and, by [J] (see 

also [B]), B~ is the John ellipsoid of K. To end the proof of Theorem 1.1, it 

remains to find a vector v for which (4.4) holds. Note that  by the definition of 

the norm II'IIE, 

n y i b v  
Z a,u, = - - .  R :  1 IIR:I( , + v)112 LLRvl( , 
i=1  m i=1 

,) _- _n . R ~  1 yi + v,T~_l(yi + v)) l /2(y i  + v 
m 

Thus what remains to prove is the following 
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LEMMA 4.1: Let ~ > O, y~, i = 1, . . . .  m be as above. There exists a vector v, 

satisfying the following conditions: 

C 
(i) flvll ~ ~/~; 

m 

(ii) E ( y l  + v,T~-l(yi + v))l/2(yi + v) = O, 
i=1  

where 

Proo~ 

1/2 nE( 
T, -- Yi + v) | (Yi + v). 

i = 1  

By (4.1), we can rewrite (ii) as 

m ((~, + v , T : l ( ~  + v))i/2 - 1) y, + ~ ( y ~  + v,T:l(y~ + v))i/2v -- 0 
i~--1 i = 1  

Define a function F: ~ B ~  ~ R n by 

F(v) = -  Yi + v,T~ -1 Yi + v 1/2 

" (i=~l((Yi"[-v, T v l ( y i + v ) } l / 2 - 1 ) Y i  ) �9 

n By the Brouwer fixed point theorem it is enough to prove that F maps ~ B  2 to 

itself. Let Ilvll _< e/x/n. Remark first that by (4.2), 

(4.5) (yi+v,  Tv-l(yi-}-v)) 1/2 ~ ( 1 - r  

For any vector w E B~ and any o q , . . . ,  am, 

(4.6) 

( E a i Y ~ , W )  < x/m max lail" y~,w) 2 
- -  i - - - - 1 , . . . , m  

i----1 

m 
< ~ l l T o l l "  max 
- -  i = l , . . . , m  

la~l, 

where 
m 

= yi o yi, lITolJ _< 1 + ~ 
i = 1  



Vol. 101, 1997 CONTACT POINTS OF CONVEX BODIES 

Let 1 < i < m. For a sufficiently large n we have 

109 

(Yi + v, T v l ( y i  -I- v ) )  1/2 - 1 < (Yi -t- v, (Yi + v)) 1/2 - 1 -t- 2 Ilid - T . I [  

(4 .7 )  2r r < 2~ 
_< _ -a- .  

So by (4.6), (4.7), 

i=1 Yi m 2e ((Yi-~v, Zvl(yi-1-v)} 1 / 2 -  1) _< - ~ ( 1  + e) �9 --~-. 

Finally, by (4.5), this means that F(v) r -~B~. I 

Remark 4.1: Let B be a convex symmetric body whose John ellipsoid is B~. 

Then by Remark 3.2 we can take u = 0. It is easy to see that  in this case we 

can take also v = 0. From the proof it follows that we can construct a convex 

symmetric body K and an operator R0 so that the John ellipsoid of K is B~, 

1 
- - B  C RoK C (I +e)B 
l + e  

and IlRo - idl] <_ 1 + r 

5. Lower  e s t i m a t e  

In this section we prove Theorem 1.2. For convenience convex centrally 

symmetric bodies will be called balls. We show that there exists a ball F C ~n 

which cannot be approximated by any convex body having a small number of 

contact points. The ball F will be constructed by a random procedure. Let 

gl(w), . . . ,g2n(w) E R ~, w E ~2 be independent Gaussian vectors. This means 

that  the coordinates of each gi (~v) are independent mean zero Gaussian variables 

normalized by E Ilgill 2 -- 1. Set 

F(w) = aDs conv (g l (o2  ) . . . .  , g2n(02)). 

We prove that  with probability close to 1 the ball F(w) has the desired property. 

The balls F(w) were introduced by Gluskin [G1] and they serve as a basic source 

of counterexamples in many problems of the Local Theory [G2], [B], [S1] etc. 

In particular in [$2] Szarek has shown that for some w the ball F(w) cannot be 

embedded in Rn between B~ and CB~, where C does not depend on n. We use 

here a modification of his argument. 
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Proof of Theorem 1.2: We begin to prove (1). We take as F the random ball 

F(a~) and show that  the probability that  d(F(a~), K)  < t for some ball K having 

a small number of contact points is less than 1. We construct first a special 

embedding of the ball K.  

LEMMA 5.1: Let K be an n-dimensional ball in N n having 2m contact points. 

Then K can be embedded into an n-dimensional subspace Y of N m so that the 

John ellipsoid of K becomes B ~  n Y and, if  e l , . . . ,  em is the standard basis of 

N m , then 

Pyej  C K for j = 1 , . . . , m .  

Here Py: Nm __. ]~m is the orthogonal projection onto Y.  

Proof: First we embed K into R n so that  B~ becomes its John ellipsoid. Let 

(5.1) i d =  ~-~ciui@ui,  rh <_m 
i=1 

be the John decomposition for K.  Let f l , - . . ,  fn be the standard basis of 11~ n. 

We consider N~ as a coordinate subspace of N: '~ . Define vectors Vl . . . .  , v~ E 1~ "~ 

by 
v i ( j ) =  ( v /~u j , f i ) ,  i =  l , . . . , n ,  j =  l,...,r=n. 

By (5.1) the vectors v l , . . . ,v ,~  form an orthonormal system in IR ~ and we can 

complete it to an orthonormal basis Vl . . . .  , v,~. Let e l , . . . ,  e,~ be the dual basis: 

vi(j) = ej(i) for i , j  = 1 , . . . , r h .  Then the vectors v ~ u l , . . . , x f ~ m U ~  can be 

obtained from the vectors e b . . . ,  e,~ by restricting them to the n first coordinates. 

We shall consider e l , . . . ,  em as the standard basis of R r~. Denote Y the subspace 

of N '~ spanned by the vectors Ul , . . . ,  u~  and let Py  be the orthogonal projection 

onto it. Then the John ellipsoid of K C Y is B ~  n Y and 

Pyei  = v~Ui  for i = 1, . . . .  rh. 

Since 0 _< ci < 1 and ui E K,  we get that  Pyei E K.  Finally consider R ~ as a 

coordinate subspace of R m. | 

Consider independent Gaussian vectors g l ( w ) , . . . ,  g2n(w) in Rn and an n x 2n 

Gaussian matr ix  G(~o) whose columns are g l ( w ) , . . . ,  g2n(w). Denote by B N the 

unit ball of the space el N. Set 

F(w) = a(w)B~". 
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Suppose that  for some ~ there exists a ball K having 2m _< ( l+co / t  2) .2n contact 

points for which d(F(w), K)  <_ t. By Lemma 5.1 we can embed K into a subspace 

Y of ]~m so that  

(5.2) PyB~ C K C P y B ~ .  

Let S: Y --+ R~ be an operator such that 

IlS: K -+ V(w)[ I = 1, 

We have the following diagram: 

B~n VY 

[Is--l: r(o3) ~ KII = d(F(,. , . ,) ,  I< )  t .  

, K 

, r( o) 

id 
, B ~ n Y  

B2 n G(~) 

By the lifting property there exists an operator A: Rm 

SPy  = G(w)A. 

IIA: BI < 1 and 

(5.3) 

By (5.2), (5.3), 

1S-1F(w)  c K C P v B ~  = S-1G(co)AB~2 . 
t 

--+ R 2'~ so that  

Hence the existence of the ball K implies that 

gj (w) E t .  G ( w ) A B ~  for j = 1 . . . .  ,2n. 

Part  (1) of the theorem follows now from the next lemma which is close to 

Theorem 1.2 of [$2]. For the proof of part (1) we take P0 = id in the lemma; the 

more general case will be used in the proof of part (2) and in Section 6. 

LEMMA 5.2: Let t > 0 and let m <_ (1 + co/t 2) �9 n for some absolute constant co. 

Let G(w) be an n x 2n Gaussian matrix whose columns are gl(w), . . . ,g2n(w).  

Then there exists an w E $2 so that for every operator A: •m ~ R2. ,  

HA: B F  ~ B~nll <_ 1 and for every orthogonal projection Po: R n ~ R n with 

dim ker Po <_ con/t 2, 

(5.4) Pogj(w) r t .  PoG(w)AB~ 
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for some j e {1 . . . . .  2n}. 

Before we prove Lemma 5.2 let us derive from it part  (2) of the theorem. As 

before we take as F the random ball 

r ( ~ )  = G(02)B~ '~, ~ e y2. 

Suppose that  for some 02 E J2 there exists a convex body D having m < 

(1 + co/t  2) �9 n contact points so that  d(F(~),  D) _< t. The body D is defined 

up to an affine transform. Embed it into ~n so that  the John ellipsoid of it will 

be B~L There is a linear operator S: R n --* E ~ and a vector u r E ~ so that  

1S - l ( r (~o )  + u) C D C S-1(F(02) + u). 
t 

(5.5) 

Define a ball 

K = c o n y ( D , - D ) .  

Then I f  has the same John ellipsoid as D and the number of the contact points 

of K is at most 2m. Set 

By (5.5) we have 

B(02) -- conv(V(w) + u,- (F(02)  + u)). 

~ B ( ~ )  c c B(~). 

By Lemma 5.1, we can e m b e d / (  into a subspace Y of •m so that  

PyB'~ C K C PyB'~ .  

We shall consider S as an operator from Y to R ~. 

Let P0: R ~ -+ R ~ be an orthogonal projection so that  kerP0 = span{u}. Then 

FOB(02) = P0r(02), 

SO 

(5.6) 

Define V: Y --~ Y by 

~Por(~) CPo3K c Por(~). 
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By the lifting property there exists an operator A: 

IIA: Br' ~ BPII <- 1 and 

(5.7) SVPy : G(w)PoA. 

]~2n so that 

We obtain the following commutative diagram: 

B~ n PY ' K id , V ( B ~  n ("l Y )  

A u(~) 

Bp G(~)r(~) 

Thus by (5.6), (5.7) we have that 

V 
, V K  

Po 
, FoB(w) 

Po 
, PoV(w) 

~Por(~) c gVK c 8V(eyBr) = Poa(~)AB~ ~, 

and hence 

Pogj (w) E tPoa(w)AB~'  for j = 1 . . . .  ,2n. 

Part (2) of the theorem follows now from Lemma 5.2 l 

Proof of Lemma 5.2: The proof of the lemma consists of two steps. First we 

estimate the measure of those w for which (5.4) is satisfied for a fixed operator 

A. Then we use an e-net argument to derive the lemma. 

STEP 1: Let co be a constant to be defined later. Set 

~5 : co l t  2. 

Recall the definition of Kolmogorov numbers. Let V be an operator in g~ and 

let k < m. Denote 

d~(V) = rain IJPk VII , 

where the minimum is taken over all orthogonal projections Pk with 

k-dimensional kernel. 

Let G(w) be an m x 2n Gaussian matrix. By Proposition 4.1 of [$2] for some 

absolute constants C, 5, C, C1 

m - k  
P{dk(0(w)A) < C , . - -  for all .4: B~ --* B~ n, N.AH < 1} (~.8) -, 

> 1 - C, exp(-~.  ( m -  k) 2) 
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for every k satisfying 2-4rn >_ m - k >_ Cl(mn31ogm) 1/5. Take k = (1 - 2a)n. 

Since the matrix G(w) can be considered as the n first rows of the matrix G(,a), 

(5.9) 

From (5.8), (5.9), it follows that there exists a set E1 C f2 of probability at most 

C .  exp ( -~ .  9($2n 2) so that 

d(l_2a>(G(w)flQ <_ 0 . 3 5  = C'c5 

for all w r E1 and all fit: ~rn ---4 ~ 2 n ,  ]]~:  S~Z ___+ _ 1. 

By the definition of Kolmogorov numbers, 

min{HPG(co)A]] [d imkerP  = (1 - a ) n ,  k e r P  D kerP0} 

<- min{llP(1-2a)nG(w)AII I dimkerPo-2a)~ = (1 - 2a)n} = d(l_2a)n(V(w)A). 

Hence there exists an orthogonal projection P: Rm __+ Rm depending on G(co)A 

so that rankP = an, 

(5.10) k e r P  D kerPo 

and 

(5.11) P G ( w ) A B ~  C C*~. P B ~ .  

It follows from (5.10) that PPo = P. 

We are going to estimate the probability that IIPgj(w)[] <_ c ta  for all j = 

1 . . . .  ,2n. For P which does not depend on w it can be easily done. Although this 

is not the case, this estimate will be essentially the same as for P independent of 

co. More precisely, let Q: ~2n ....+ ~2n be an orthogonal projection onto Im(A) and 

set ~) = id - Q. Then G(w)QA and G(w)Q,A are independent random matrices. 

Note that in fact the projection P depends only on G(w)IIm(A)A = G(w)QA. 

Since rank(A) = m, rank(~ = 2n - m >_ n/2. Let t~ be a normalized Gaussian 

vector independent from G(w). It follows from [$2, p. 917-918] that there exist 

absolute constants C' and a, so that 

P{ max []Pgj(w)l ] < at .  C '5}  < [P{IfP~IJ < c ' .  a t - C ' a } ]  2an. 
j= l , . . . , 2n  -- - -  - -  



Vol. 101, 1997 CONTACT POINTS OF CONVEX BODIES 115 

Note that P~ is a ~n-dimensional Gaussian variable normalized by E IIP~[I 2 = & 

Thus the above expression is less than 

(e~/2C p . 3t . C* ~/J) ~ 2 ~ .  

Set Co = (e 3/2 �9 3C*CP) -2. We conclude that 

(5.12) 7 ) ~  max ]lPgj(w)ll< 3 C * c ~ 1 7 6  ) 
~ j = l  . . . . .  2n  - -  t k t 2  " n 2  " 

STEP 2: The e-net argument. Using (5.11) and (5.12) we prove that for some 

and for all operators A there exists j _< m, so that 

Pogj(w) ~ 3t. PoG(a;)AB~. 

For A > 0 put 
= j Ila( ): n B Jl > 

By Lemma 2.8 of [$2], there exists a A for which "P(Ex) _< exp(-Cn/8) for some 

absolute constant C. Set 
C* Co e -  
t2A 

and select an e-net .4 from the set {A: R TM ~ ~2n I N A: B~  --~ B2n[I < 1} in 

[1"11242 norm. By Claim 4.5(5) of [$2] we have 

( )  aco cardA < exp Cm.  (2n~ g2n) 1/2 _< exp(Ot2n3/210gl/2n ) <<_ exp k-~- �9 n 2) 

provided t 4 _< (aco/C) �9 n 1/2 log -1/2 n. Hence with probability at least 

2aco ) 
1 - c a r d A - e x p  t2 .n 2 -7)(E1) 

< l - e x p k  t2 .n  2 ) - C . e x p  - ~ - ~ . n  2 

for every A e A there exists a projection P: R "~ ~ ]~m with rankP = con/t 2 so 

that 

(5.13) PPo = P, 

(5.14) PG(~)f iB~ C C* Co ~5 " PB~,  
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and 

3C*c0 
(5.15) max ]lPgj(a~)lf > - -  

j = l , . . . , 2 n  t 

Choose w ~ E~ for which (5.13) (5.15) hold for every A r A. Let A: R "~ --* ~2n 

be an operator, [[A: B ~  --+ B~[I  < 1. There exists an operator A G ~4 so that  

Ir A - All -< ~. Let P be a projection for which (5.13) - (5.15) hold for A. Suppose 

that for every j = 1 , . . . ,  2n, 

Pogi(w) r t .  PoG(w)AB~. 

Then by (5.13), (5.14) for all j 

Pgj(~) Ct. PG(~) f tB~ + t .  PG(~)(A - f l )B~ 

Hence 
2C* Co 3C* co 

m a x  flPgj( )rl < - -  < - -  
j=l,...,2n - -  t - t 

I and this contradicts (5.15). 

6. D v o r e t z k y - R o g e r s  t y p e  f ac to r i za t i ons  

In this section we use the notation fiT: X --* YII as well as liT: Bx  ~ ByII for 

the norm of an operator T between Banach spaces X and Y with unit balls B x  

and By.  

The classical result of Dvoretzky-Rogers states that for every Banach space 

X of dimension n 2 there exists an n-dimensional subspace Y and a factorization 

id -- ao/3 of the identity operator in ~ n  so that !]/3: g~ --* YJI" {] c~: Y --+ t~]l -< 8. 

This means that  some section of the unit ball of X can be embedded between the 

Euclidean ball and the cube. In [$2] Szarek proved that for every n there exists 

a convex symmetric body F which cannot be embedded into ~n between B~ and 

t .  B ~  if t < C(n/ logn)  1/1~ However in [B-S] it was shown that every convex 

symmetric body possesses a section of a proportional dimension k which can be 

embedded between B~ and C .  B k for some constant C depending on k/n. The 

estimate of C(k/n) was improved later in [S-T], [Gil], [Gi2]. Up to now, the best 

result is the following 
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THEOREM 6.0 ([Gi2]): Let X be an n-dimensionM Banach space. For every 

> 0 and for some m > (1 - r there exists a factorization id = a o/3, where 

C 

Using the decomposition (1.4) for convex symmetric bodies we can construct 

a factorization which is somehow dual to that of Theorem 6.0. Instead of em- 

bedding a section of the body, we embed the entire body between the Euclidean 

ball and a cube of larger dimension. More precisely, we have the following 

THEOREM 6.1: Let X be an n-dimensional Banach space. For every r > 0 there 

exist m < C(r �9 n .  log3n and an orthogonal projection P: 1 ~  ~ l~ TM of rank n 

having the following factorization through the space X:  P = T o S, where 

(6.1) liT: X --+ e~l I �9 IIS: f~" ~ Xl[ <_ (1 + e) .  lIP: g~ --+ e~l[.  

Proof: Let B be the unit ball of 

B~, Applying Theorem 1.1 to the 

convex symmetric body K whose 

hold. Let Y be a Banach space 

factorization (6.1) for the space Y*. 

Define an operator 2r: Y* --~ ]~m by 

= �9 ( y * ,  

the space X*. Then the John ellipsoid of B is 

body B, and using Remark 4.1, we construct a 

John ellipsoid is B~ and for which (1.3), (1.4) 

whose unit ball is K. We construct first the 

y* C Y*. 

Note that if the Euclidean structure in Y* is defined by the John ellipsoid of K ~ 

then T: ~ --* ~ is an isometric embedding. Since U l , . . . ,  um are contact points 

of K,  

T:Y* ~ t ~  = max V~"  
j= l , . . . ,m 

Define now an operator S: R "~ ~ Y *  by 

m 

= a d z ,  
i=1 

and let P = T o S. Then PI(~y*)J- = 0 and for every z = Ty* we get 

Pz = ~-~ ai(Ty *, Tui)Tui = ~ ai(y*, tti)Tui = Ty* = z. 
i=1 i=1 
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So P is an orthogonal projection onto the space 27Y*. Since S: g~ n 27Y* ~ g~ 

is an isometry, 

"~ = P :  ~ [ o o  = --+ o~ 

By Remark 4.1 there exists an operator R o X  ~ Y* so that 

IIR0: X + Y*]I' IIRo 1: Y* -+ XII -~ (1 + r 

To end the proof, set T = T o R0 and S = Ro 1 o S. | 

Remark: Note that for the projection P constructed in the proposition we have 

[I P :  s ---* g~[] = maxj=l ...... ~ vfh~ _< V/(1 + e )n /m,  while the minimal norm of 

P: g~ ~ e~ over all orthogonal projections of rank n is not smaller than v/-@m. 

Applying Theorem 1.1 and Remark 4.1 to the calculation of the ~r2 norm of the 

identity operator from a Banach space X to the Euclidean space, whose norm 

is defined by the John ellipsoid of B x ,  we obtain the following refinement of 

Theorem 3.2.5 of IT-J]: 

THEOREM 6 . 2 :  Let X be an n-dimensional Banach space and let B~ be the 

ellipsoid of  maximal volume contained in its unit ball B x .  Then for every ~ > 0 

there exists the following factorization of  the identity operator from X to g~: 

(6.1) 

id 
X , ~ 

v @ m . i d  

Here I[U[], I[VI[ _< 1 + e  and m _< C(e).  n . l og  3n. 

Proof" Let B be the unit ball of the space X*. Then the John ellipsoid of B is 

B~. Applying Theorem 1.1 to the body B, and using Remark 4.1, we construct a 

convex symmetric body K whose John ellipsoid is B~ and for which (1.3), (1.4) 

hold. Let Y be a Banach space whose unit ball is K. We construct first the 

factorization (6.1) for the space Y*. Define an operator/ / :  •n ~ ~m by 

>) + Y. Uy* = a l .  (y*,ul)  . . . .  , - -am"  (y*,Um , C 
n 
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Since u l , .  um are the contact  points of K and ma- < 1 + ~ for i = 1 .m,  
" ' ~  n I _ ' '  

if: Y* -* s  _< 1 + e. Let e l , . . . ,  em be the s tandard  basis of g~. Define now 
~ 

an operator  V: N T M  --* R n by 

? n 
ei @ Ui. 

1 

Then 

= . m a x  E ( x ,  ei)(y, ui) 
i = l  

x r B ~ , y  r B~} 

< max ai" (y, ui) 2 
\ i = 1  

It  follows from (1.4) tha t  

x e B~,y e Bf} 

} y E B ~  max a i < ( l + e )  -1/2. 
i = l . . . m  

1) o ~/-~--~idw~ o / )  = idw,. 

We remind the reader now tha t  by Remark  4.1, 

and II(R~)-I: f~ --+ ~ l l  -< 1 + a. IIG: x -~ Y*I[ -< 1 + 2~ 

To end the proof  set 

v : U o G ,  v = ( G )  - 1 o ~ .  I 

Using the results of Section 5 we obtain a lower bound for the norm of the 

factorizat ion of Theorem 6.0. 

THEOREM 6.3: For every e > 0 and n > n(e) there exists an n-dimensional 

Banach space X so that  every factorization id = a o fl of the identity opera tor  

from ~ to ~ with m > (1 - e)n satisfies 

C 
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Here  C is an abso lu te  cons tan t .  

P r o o ~  Let X be a Banach space whose unit ball is the polar of the body F(w) 

constructed in Section 5: 

B x  = V(w) ~ =  {x 6 JR" I I(x, gl(w)> I < 1 , . . . ,  I(x, g2n(w)> I <_ 1}. 

Here g l ( w )  . . . . .  g2n(W) E IR ~ are independent Gaussian vectors. We show that  

for some w the space X has the property claimed in Theorem 6.3. 

Suppose that  id = ~ o/3 is a factorization, so that  

II~: B ~  -~ Bx l l  5 , ,  Ila: B x  ~ B211 ~ 1. 

Recall that  we use the notation lIT: K --* DI] for the norm of the operator T 

between Banach spaces, whose unit balls are K and D. Put  Z = a(Rm),  K = 

F(w) O Z. Denote by u the operator a,  considered as an operator from R "~ to X,  

and by q the operator /3  restricted to Z. Then u -1 = r/. Passing to the adjoint 

operators, we get 

II~*: ~,-o ~ BT'I[ < s. 

Note that  K ~ = P o F ( w )  for some orthogonal projection Po for which dim ker Po -< 

en. We have the following diagram: 

B ~  ~ > K ~ " , s .  B ~  

,el 

where G(w) = (gl(w), . . . ,g2n(w))  is an n • 2n Gaussian matrix. By the lifting 

property of t~ there exists an operator A: R "~ ~ R 2'~, so that  

P o C ( ~ ) A  = ~* 

a.d IIA: B r  _< I. Since . * K  o B7, we have 

Por(~) = K ~ c s .  ~ * B 7  = ~. PoC(~)ABT.  

Applying Lemma 5.2 with t = (Co~e) 1/2, we obtain that  

= I1~: B 7  ~ r ( ~ ) ~  _> t. , 
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7. S u b m a t r i c e s  of  an  o r thogona l  m a t r i x  

In [K-T] B. Kashin and L. Tzafriri posed the following problem: 

Let e > 0 and let n, M be natural numbers, n < M. Given an n • M matrix 

A whose rows are orthonormal, find a subset I C {1 . . . . .  M}  of smallest possible 

cardinality so that for all x E g~ 

(1 - r ][x]] _< ~ [ .  ]]RIATxll < (1 + e ) .  ][x]]. 

Here RI: •M ~ ]~M is the orthogonal projection onto the space span{ei ] i E I}, 

where M {e~}i=l is the standard basis of ll~ M. 

Under an additional restriction that all the entries of A have the same absolute 

value 1/v/-M, they proved that one can take 

C 
[II <_ ~-~" n21ogn. 

Let x l , . . . , X M  be the columns of the matrix A. Since the rows of A are 

orthonormal, we can decompose the identity operator in R ~ as follows: 

M 

(7.1) id = E xj | xj.  
j = l  

Using the technique of Section 3, we prove the following 

THEOREM 7.1: Let A = ( a i , j )  be an n x M matrix, whose rows are orthonormal. 

Suppose that for a11 j 

n 

n . t 2 "  (7.2) Z a~,j <_ --~ 
i=1 

Then for every e > 0 there exists a set I C {1, . . . ,  M} so that 

(7.3) I I ]<  C(r t 2- nlog3 n 

and for all x E ~n 

(7.4) ( x - ~ ) . [ I x l l < ~  ,~M [[R,ATxl I < ( I + r  
VIII 
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n Remark 7.1: If all the entries of A have absolute values 1/v/M, then ~-~i=1 a? �9 = 

n / M  for all j and so one can take 

JI[ < C(e) �9 n log 3 n. 

Remark 7.2: The condition (7.2) may be weakened. However, without any 

condition the number of elements of I can be of order M. Indeed, consider an 

A = 

(M + 1) x (n + 1) matrix 
1 0 . . . 0 )  
0 

A / 
0 

where A' is an M x n matrix with orthonormal rows, all of whose entries have 

absolute value 1/v/-M. Then, since (7.4) implies that 1 C I,  we have that 

The proof of Theorem 7.1 is similar to that of Lemma 3.1 and actually to that  

of the main lemma of [R]. Let I1 be a random subset of {1 . . . .  , M} defined as in 

the proof of Lemma 3.1. Then 

sup (2" NRI1NTzll 2 -  1) = " E xj | xj - i d  . 
Ilxll=l jEI1 

By Lemma 3.2 this expression is less than 

C. log n �9 v/log M �9 max 
j=I,...,M 

1/2 n 
IIxjH. x j |  = c . t .  logn l v / ~ M  

for some set I1 satisfying ]11[ <: M/2. To obtain the set I we iterate this step 

until (7.4) holds�9 
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